Расчет среднего значения и среднего квадратического отклонения по нескольким мгновенным выборкам

Расчет среднего значения и среднего квадратического отклонения по нескольким мгновенным выборкам

3. Расчет среднего значения и среднего квадратического отклонения по нескольким мгновенным выборкам

3.1. Среднее значение рассчитывают по формуле

x023.gif,                                                                  (5)

где хj - среднее значение j-й мгновенной выборки;

m - число мгновенных выборок.

3.2. Пример. Определить среднее значение контролируемого параметра по данным четырех мгновенных выборок, полученных при обработке вала диаметром 13,3h8-0,27 и приведенных в табл. 2.

По формуле (1) рассчитывают среднее значение хj контролируемого параметра для каждой мгновенной выборки. Результаты расчета приведены в нижней строке табл. 2.

Таблица 2

Номер детали в выборке

Номер выборки

1

2

3

4

1

13,25

13,18

13,19

13,13

2

13,28

13,22

13,20

13,13

3

13,26

13,14

13,22

13,29

4

13,10

13,20

13,28

13,21

5

13,14

13,25

13,25

13,20

хj

13,206

13,178

13,228

13,192

По формуле (5) определяем искомое среднее значение

x024.gif.

3.3. Среднее квадратическое отклонение по нескольким мгновенным выборкам одинакового объема рассчитывают по формуле

x025.gif,                                         (6)

где Sj - среднее квадратическое отклонение в j-й мгновенной выборке, определяемое по п. 2.3.

3.4. Пример. Определить среднее квадратическое отклонение по данным п. 3.2 (табл. 2).

Определяем величину sj для каждой мгновенной выборки по формуле (3) п. 2.3.

Результаты расчетов сведены в табл. 3.

Таблица 3

Номер выборки

1

2

3

4

sj

0,080

0,033

0,037

0,066

По формуле (6) определяем искомую величину

x026.gifx027.gif

3.5. В некоторых случаях среднее квадратическое отклонение с достаточной для практики точностью можно определить методом размахов. В этом случае используют формулу

x028.gif,

x029.gif,                                                          (7)

где Rj - величина размаха в j-й мгновенной выборке.

3.6. Пример. Определить среднее квадратическое отклонение методом размахов по данным п. 3.2 (табл. 2). Определяем величины Rj как разность максимального и минимального значений параметра в j-й мгновенной выборке. Результаты расчетов сведены в табл. 4.

Таблица 4

Номер выборки

1

2

3

4

Rj

0,18

0,08

0,09

0,13

Определяем искомую величину по формуле (7):

x030.gif

4. Оценку достоверности полученных значений параметров точности по пп. 2 и 3 следует производить методом доверительных интервалов, исходя из общего объема выборки n.

4.1. Доверительным интервалом для величины х будет интервал

x031.gif,                                                    (8)

в котором e определяют по формуле

x032.gif,                                                                    (9)

где tg - квантиль распределения Стьюдента, определяемый для заданной доверительной вероятности g, по табл. 5 в зависимости от уровня значимости а=1-g и числа степеней свободы k=n-1;

S - среднее квадратическое отклонение в выборке.

Таблица 5

Значения квантилей распределения Стьюдента tg

К

Уровень значимости а

0,80

0,40

0,20

0,10

0,05

0,02

0,01

1

0,325

1,376

3,078

6,314

12,706

31,821

63,657

2

0,289

1,061

1,886

2,920

4,303

6,965

9,925

3

0,277

0,978

1,638

2,353

3,182

4,541

5,841

4

0,271

0,941

1,533

2,132

2,776

3,747

4,604

5

0,267

0,920

1,476

2,015

2,571

3,365

4,032

6

0,265

0,906

1,440

1,943

2,447

3,143

3,707

7

0,263

0,896

1,415

1,895

2,365

2,998

3,499

8

0,262

0,889

1,397

1,860

2,306

2,896

3,355

9

0,261

0,883

1,383

1,833

2262

2,821

3,250

10

0,260

0,879

1,372

1,812

2,228

2,764

3,169

11

0,260

0,876

1,363

1,796

2,201

2,718

3,106

12

0,259

0,873

1,356

1,782

2,179

2,681

3,055

13

0,259

0,870

1,350

1,771

2,160

2,650

3,012

14

0,258

0,868

1,345

1,761

2,145

2,624

2,977

15

0,258

0,866

1,341

1,753

2,131

2,602

2,947

16

0,258

0,865

1,337

1,746

2,120

2,583

2,921

17

0,257

0,863

1,333

1,740

2,110

2,567

2,898

18

0,257

0,862

1,330

1,734

2,101

2,552

2,878

19

0,257

0,861

1,328

1,729

2,093

2,539

2,861

20

0,257

0,860

1,325

1,725

2,086

2,528

2,845

21

0,257

0,859

1,323

1,721

2,080

2,518

2,831

22

0,256

0,858

1,321

1,717

2,074

2,508

2,819

23

0,256

0,858

1,319

1,714

2,069

2,500

2,807

24

0,256

0,857

1,318

1,711

2,064

2,492

2,797

25

0,256

0,856

1,316

1,708

2,060

2,485

2,787

26

0,256

0,856

1,315

1,706

2,056

2,479

2,779

27

0,256

0,855

1,314

1,703

2,052

2,473

2,771

28

0,256

0,855

1,313

1,701

2,048

2,467

2,763

29

0,256

0,854

1,311

1,699

2,045

2,462

2,756

30

0,256

0,854

1,310

1,697

2,042

2,457

2,750

40

0,255

0,851

1,303

1,684

2,021

2,423

2,704

60

0,254

0,848

1,296

1,671

2,000

2,390

2,660

120

0,254

0,845

1,289

1,658

1,980

2,358

2,617

¥

0,253

0,842

1,282

1,645

1,960

2,326

2,576

4.2. В случае, если параметр х распределен по нормальному закону, его доверительный интервал определяют по формуле

x033.gif,                                      (10)

где величины x034.gif и x035.gif (значения критерия согласия Пирсона) определяют по табл. 6в зависимости от числа k=n-1 и вероятности Р

x036.gif.                                   (11)

Таблица 6

Значения х2 в зависимости от Р и k=n-1

k

Р

0,005

0,025

0,05

0,95

0,995

0,999

1

7,80

5,00

3,80

0,004

0,001

0,00

3

13,00

9,30

7,80

0,35

0,20

0,01

5

17,00

12,70

11,00

1,10

0,83

0,15

7

20,50

16,00

14,00

2,20

1,70

0,60

10

25,00

20,50

18,50

4,00

3,20

1,50

15

33,00

27,50

25,00

7,40

6,20

3,40

20

40,00

34,00

31,00

11,00

9,60

6,00

25

47,00

40,50

38,00

14,50

13,00

8,60

30

54,00

47,00

44,00

18,50

16,70

11,50

36

62,00

54,00

51,00

23,00

20,21

15,00

40

66,00

60,00

66,00

26,00

24,00

18,00

46

74,00

66,00

62,00

31,00

29,00

21,00

50

78,00

72,00

68,00

35,00

32,00

24,00

56

86,00

78,00

74,00

40,00

37,00

28,00

60

92,00

84,00

78,00

41,00

40,00

31,00

66

98,00

90,00

86,00

48,00

46,00

36,00

70

104,00

95,00

90,00

52,00

48,00

39,00

Доверительная вероятность g обычно принимается достаточно большой и равной 0,9; 0,95; 0,99 в зависимости от уровня требований, предъявляемых к качеству изготовляемой продукции.

4.3. Пример. Определить доверительный интервал для величин

x007.gif=13,206 и

S=0,08,

рассчитанных в пп. 2.2 и 2.4 при общем объеме выборки n=5.

4.4.1. Определяем доверительный интервал для x007.gif по выражению (8)

x031.gif.

Задаваясь доверительной вероятностью g=0,9, определяем уровень значимости

а=1-g=0,1.

По табл. 5 для а=0,1 и k=n-1=4 находим значение квантиля распределения Стьюдента tg=2,132.

Рассчитываем величину e по формуле (9):

x037.gif.

Следовательно, Iх=(13,121¸13,291).

4.4.2. Определяем доверительный интервал для S по выражению (10)

x033.gif,

Задаваясь доверительной вероятностью g=0,9, определяем вероятности Р по выражению (11)

x038.gif;        x039.gif.

По табл. 6 для k=n-1=4 находим значения критериев согласия Пирсона

x034.gif=9,        x035.gif=0,72.

Следовательно,

x040.gif.

4. Пример. Оценить точность ТС токарной операции методом квалитетов.

4.1. Исходные данные. Операцию производят на автомате продольного точения мод. 1П16 класса точности П; в качестве заготовки используют пруток диаметром 16 мм из автоматной прутковой стали; максимальное возможное смещение режущей кромки резца (из-за его износа, тепловых деформаций и т.п.) по справочным данным не превосходит 7 мкм; допуск на обработку контролируемого параметра диаметром 14h8 равен 27 мкм.

4.2. По ГОСТ 8831-79 находим, что допуск на диаметр образца-изделия в поперечном сечении равен 8 мкм.

4.3. Определяем область возможных отклонений контролируемого параметра по п. 3 (равную сумме допуска на диаметр образца-изделия и удвоенной абсолютной величины смещения режущей кромки резца):

dS=8+2·7=22 мкм.

4.4. Сравнивая величину dS с допуском на обработку контролируемого параметра диаметром 14h8, в соответствии с п. 2 делаем вывод о том, что точность рассматриваемой ТС следует считать удовлетворительной.


Словарь-справочник терминов нормативно-технической документации. . 2015.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Расчет среднего значения и среднего квадратического отклонения по нескольким мгновенным выборкам" в других словарях:

  • Расчет среднего значения и среднего квадратического отклонения по одной выборке — 2. Расчет среднего значения и среднего квадратического отклонения по одной выборке . 2.1. Среднее значение или центр рассеяния определяют по формуле ,                                                                (1) если результаты измерения xi …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 27.202-83: Надежность в технике. Технологические системы. Методы оценки надежности по параметрам качества изготовляемой продукции — Терминология ГОСТ 27.202 83: Надежность в технике. Технологические системы. Методы оценки надежности по параметрам качества изготовляемой продукции оригинал документа: 1. Метод случайных функций 1.1. Определение показателей точности ТС… …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • метод — метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди …   Словарь-справочник терминов нормативно-технической документации

  • Коэффициент эффективности вибрационной защиты — – отношение среднего квадратического значения виброскорости, виброускорения защищаемого объекта до введения виброзащиты к значению той же величины после введения виброзащиты. [ГОСТ 12.4.002 97] Коэффициент эффективности вибрационной защиты… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Брутто-премия — (англ. gross premium) полная сумма страхового взноса (страховой премии), которую уплачивает страхователь страховщику в соответствии с договором страхования. Содержание 1 Расчет брутто премии 1.1 Нетт …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»